skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shivam Gupta, Jasper Lee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Location estimation is one of the most basic questions in parametric statistics. Suppose we have a known distribution density f , and we get n i.i.d. samples from f (x − μ) for some unknown shift μ. The task is to estimate μ to high accuracy with high probability. The maximum likelihood estimator (MLE) is known to be asymptotically optimal as n → ∞, but what is possible for finite n? In this paper, we give two location estimators that are optimal under different criteria: 1) an estimator that has minimax-optimal estimation error subject to succeeding with probability 1 − ¶ and 2) a confidence interval estimator which, subject to its output interval containing μ with probability at least 1 − ¶, has the minimum expected squared interval width among all shift-invariant estimators. The latter construction can be generalized to minimizing the expectation of any loss function on the interval width. 
    more » « less